Objetivos: Tiene como objetivo conocer los distintos enfoques tecnológicos y las técnicas más utilizadas en las principales áreas de aplicación del PLN, como la extracción de información, el funcionamiento de aplicaciones de corrección y traducción automática y el desarrollo de interfaces conversacionales, así como aprender en qué consisten las tareas de PLN más habituales que deben realizar los profesionales en este ámbito.
Requisitos: Para realizar este curso se requiere de formación lingüística.
A quién va dirigido: Este curso está dirigido a lingüistas/humanistas (filólogos, correctores, traductores, profesores de español, asesores lingüísticos…) que deseen conocer el valor de su profesión aplicado al Procesamiento del Lenguaje Natural (PLN), una de las áreas más importantes en el desarrollo de la Inteligencia Artificial (IA).
Abrimos nuevas convocatorias online cada semana. ¡Consúltanos las fechas más próximas!
ver información adicional
|
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL SECTOR
0. Objetivos de la unidad
1. Introducción
2. Definiciones y conceptos
2.1. Inteligencia artificial
2.2. Computación cognitiva
2.3. Procesamiento del lenguaje natural (PLN)
3. El sector de las tecnologías del lenguaje
3.1. Historia y evolución
3.1.1. Tareas de PLN casi resueltas
3.1.2. Tareas de PLN que demuestran un rápido avance
3.1.3. Tareas de PLN con grado de madurez limitado
3.2. Tendencias y futuro
3.2.1. Tecnologías del lenguaje en español
4. Barreras y retos
4.1. Barreras
4.2. Retos
UNIDAD DIDÁCTICA 2. EL LINGÜISTA EN PLN
0. Objetivos de la unidad
1. Introducción
2. El lingüista computacional. Perfiles profesionales
3. Conocimientos y habilidades requeridas del lingüista en PLN
3.1. Conocimientos
3.2. Destrezas
3.3. Competencias transversales
4. Funciones del lingüista en proyectos PLN
4.1. Creación y mantenimiento de recursos léxico-semánticos
4.2. Diseño de ontologías y modelos lingüísticos
4.3. Etiquetado de corpus y control de calidad
4.4. Ajuste y/o asesoría lingüística para optimización de software
4.5. Dirección de proyectos
Ejercicio 1: Optimización de softwares de corrección
Ejercicio 2: Etiquetado de corpus de entrenamiento
UNIDAD DIDÁCTICA 3. NIVELES LINGÜÍSTICOS: DEL ANÁLISIS A LA COMPRENSIÓN
0. Objetivos de la unidad
1. Introducción
2. Niveles de procesamiento lingüístico
2.1. Análisis fonético-fonológico
2.2. Análisis morfológico / léxico
2.3. Análisis sintáctico
2.4. Análisis semántico
2.5. Integración del discurso
2.6. Análisis pragmático
3. Tareas PLN vs. aplicaciones
Ejercicio 3: Uso de aplicaciones para la desambiguación léxica
Parte 1: Trabajar con WordNet
Parte 2: Trabajar con NLTK
UNIDAD DIDÁCTICA 4. TÉCNICAS DE PROCESAMIENTO DEL LENGUAJE NATURAL
0. Objetivos de la unidad
1. Introducción
2. Sistemas de reglas
2.1. Fundamentos
2.2. Proceso de ejecución de las reglas
2.3. Ejemplos de aplicación
3. Aprendizaje automático
3.1. Fundamentos
3.2. Proceso de aprendizaje supervisado
4. Aprendizaje profundo (deep learning)
4.1. Fundamentos de las redes neuronales
4.2. Deep learning
4.3. El aprendizaje por transferencia
5. Métricas para control de calidad
6. Modelos de representación del texto
6.1. Bolsa de palabras
6.2. Vectores de embeddings
Ejercicio 4: Representación de conocimiento con bolsa de palabras
UNIDAD DIDÁCTICA 5. EL CORPUS EN PLN
0. Objetivos de la unidad
1. Introducción
2. El corpus en proyectos de PLN
2.1. Tipos de corpus
2.2. Uso del corpus en desarrollos PLN
3. Lingüística de corpus
3.1. Recopilación y diseño
3.2. Codificación y anotación de corpus
3.2.1. La codificación
3.2.2. La anotación o etiquetado
3.3. Gestión y explotación. Análisis de concordancias
3.3.1. Ejemplo 1
3.3.2. Ejemplo 2
4. Corpus compensado, algoritmo ético
4.1. La ética del dato
4.1.1. Ejemplo 1
4.1.2. Ejemplo 2
4.1.3. Ejemplo 3
4.2. Detección y compensación de sesgos
Ejercicio 5: Explotación de corpus propios
UNIDAD DIDÁCTICA 6. EXTRACCIÓN Y GENERACIÓN DE INFORMACIÓN
0. Objetivos de la unidad
1. Introducción
1.1. Orígenes de la extracción de información
1.2. Información estructurada vs. información no estructurada
2. Tareas de extracción de información
2.1. Reconocimiento de entidades
2.2. Clasificación automática
2.3. Extracción de información elaborada
2.4. Recuperación de información
2.5. Respuesta a preguntas
2.6. Extracción de resúmenes
3. Generación automática de texto
3.1. Fundamentos
3.2. Modelos GPT
UNIDAD DIDÁCTICA 7. CORRECCIÓN AUTOMÁTICA
0. Objetivos de la unidad
1. Introducción
2. Verificación automática vs. autocorrección vs. texto predictivo
3. Técnicas de corrección automática
3.1. Técnicas de bajo nivel
3.1.1. Corrección ortográfica basada en diccionarios
3.1.2. Corrección basada en corpus y estadística de n-gramas
3.1.3. Corrección basada en reconocimiento de patrones
3.2. Técnicas de alto nivel
3.2.1. Corrección basada en parser
3.2.2. Enfoque neuronal aplicado a la corrección
3.2.3. Redacción predictiva inteligente
4. Capacidades de la corrección automática
4.1. Verificación ortográfica
4.2. Verificación gramatical
4.3. Verificación ortotipográfica
4.4. Verificación de estilo
5. Corrector automático y corrector humano
Ejercicio 6: Reglas de verificación ortográfica
UNIDAD DIDÁCTICA 8. TRADUCCIÓN AUTOMÁTICA
0. Objetivos de la unidad
1. Introducción
2. Técnicas de traducción automática (TA)
2.1. TA basada en reglas
2.2. TA estadística
2.3. TA neuronal
2.4. Sistemas híbridos
3. Traductor automático y traductor humano
3.1. Capacidades de la traducción automática
3.2. Oportunidades del traductor humano poseditor
3.2.1. Posedición de traducción automática
3.2.2. Evaluación de sistemas TA y asesoría
3.2.3. Optimización de software
UNIDAD DIDÁCTICA 9. TECNOLOGÍAS DEL HABLA. RECONOCIMIENTO Y SÍNTESIS DE VOZ
0. Objetivos de la unidad
1. Introducción a las tecnologías del habla
2. Sistemas de reconocimiento de voz
2.1. Dificultades asociadas al reconocimiento de voz
2.2. Tipos de reconocedores de habla
2.3. Componentes y arquitectura
2.4. Técnicas
3. Sistemas de síntesis de voz
3.1. Procedimiento
3.2. Técnicas
4. El lingüista en tecnologías del habla
Ejercicio 7: Análisis del servicio de voz a texto
UNIDAD DIDÁCTICA 10. INTERFACES CONVERSACIONALES
0. Objetivos de la unidad
1. Introducción
1.1. Historia
1.2. Aplicaciones
1.3. Terminología
1.4. Tipos principales de sistemas conversacionales
2. Funcionamiento de un sistema conversacional
3. Diseño de un asistente y el papel del lingüista
4. Ecosistema tecnológico
UNIDAD DIDÁCTICA 11. PRÁCTICA FINAL
1. Planteamiento
2. Descripción de la práctica
2.1. Escenario
2.2. Propuesta
3. Rúbrica de evaluación
ver temario completo
|
¿Quieres aprender nuevos idiomas y no tienes dinero para cursos presenciales? Con Funmedia puedes estudiar más barato el idioma que prefieras sin salir de casa. No esperes más y apúntate a este ...
¿Quieres aprender nuevos idiomas y no tienes dinero para cursos presenciales? Con Funmedia puedes estudiar más barato el idioma que prefieras sin salir de casa. No esperes más y apúntate a este ...
Aprenderás de manera sencilla y práctica cómo escribir correctamente las unidades de medida, los principios activos o las siglas, por ejemplo. Especial importancia tiene en este curso la ...
Objetivos: De una manera genérica, el grado de Lengua y literatura catalanas aspira a proporcionaros a los estudiantes la capacidad para lo siguiente:-expresarse con excelencia en lengua catalana (y ...
A quién va dirigido: El Curso Online de Didáctica de la Lengua está dirigido a todos aquellos profesionales que se dediquen a la actividad docente o estudiantes que deseen adquirir conocimientos ...
Este Curso de Polaco B1 ofrece una formación avanzada de la lengua polaca que capacita al alumno para desenvolverse en situaciones cotidianas, obteniendo el Nivel Oficial del Consejo Europeo B1 ...
Objetivos: El objetivo es dar respuestas innovadoras a la diversidad cultural y lingüística en el ámbito educativo. Con el fin de impulsar la innovación en el ámbito de la educación intercultural y ...
Recomiéndanos | Laboris.net en inicio | Favoritos | Contáctenos | Acerca de Laboris.net | Condiciones de uso | Política de privacidad | Oferta de empleo | Política de cookies
© 2025 EMAGISTER Servicios de formación, S.L.